Cyclic $\mathbb{F}[x]$-modules (continued)
From now on, rather than using coset notation for elements of $\mathbb{F}[x] /(g)$, we will simply use u^{0} as a name for $1+(g)$. We let $u:=x u_{0}=x+(g)$ and $u^{i}:=x^{i} u_{0}$. In general if $f \in \mathbb{F}[x]$, then we will write $f(u)$ as an abbreviation for $f+(g)$. Since $\mathbb{F}[x] /(g)$ is a ring-as well as an $\mathbb{F}[x]$-module-we could think of u^{i} as the i-fold product $u \cdot u \cdots u$. But of course we do not multiply elements of a module, so we must bear in mind that u^{i} is just a symbol. Similarly, $f(u)$ is "really" $f(x) u_{0}$ - the image of u_{0} under the action of $f(x)$-or equally really the residue of $f \bmod (g)$.
If $g=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}+x^{n}$, then $\left\{1, u, \ldots, u^{n-1}\right\}$ is a basis for the \mathbb{F}-vector space $\mathbb{F}[x] /(g)$, and the action of x is given by $x u^{i-1}=u^{i}$ for $i=1, \ldots, n-1$, and $x u^{n-1}=$ $-a_{0}-a_{1} u-\cdots-a_{n-1} u^{n-1}$. We have just repeated the description of the companion matrix.
Suppose g in the last example of the last lecture is a power of a polynomial-say

$$
h=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}+x^{k}, \text { and } g=h^{\ell}=a_{0}^{\ell}+\cdots+x^{k \ell} .
$$

There are natural bases for (the vector space) $\mathbb{F}[x] /\left(h^{\ell}\right)$ other than $\left\{1, u, u^{2}, \ldots, u^{k \ell-1}\right\}$. For example

$$
\begin{aligned}
& \left\{1, u, u^{2}, \ldots, u^{k-1},\right. \\
& \quad h(u), u h(u), u^{2} h(u), \ldots, u^{k-1} h(u), \\
& \quad h^{2}(u), u h^{2}(u), u^{2} h^{2}(u), \ldots, u^{k-1} h^{2}(u), \\
& \vdots \\
& \left.\quad h^{\ell-1}(u), u h^{\ell-1}(u), u^{2} h^{\ell-1}(u), \ldots, u^{k-1} h^{\ell-1}(u)\right\}
\end{aligned}
$$

Problem. Justify the claim that this is a base. What does the matrix that expresses

$$
f(u) \mapsto x f(u): \mathbb{F} /\left(h^{\ell}\right) \rightarrow \mathbb{F} /\left(h^{\ell}\right)
$$

look like?
Let us look at the specific case when $h=x-c$ and $g=(x-c)^{n}$. In this case, we have a basis $\mathcal{V}=\left\{v_{0}, \ldots, v_{n-1}\right.$ defined as follows: $v_{0}=u^{0}, v_{1}=(x-c) u^{0}, v_{2}=(x-c) v_{1}=(x-c)^{2} u_{0}, \ldots$, $v_{n-1}=(x-c) v_{n-2}=(x-c)^{n-1} u^{0}$. Note that $(x-c) v_{n-1}=0$. Thus:

$$
((x-c) ; \mathcal{V} \mathcal{V})=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right) .
$$

Thus, with respect to this basis for $\mathbb{F}[x] /(x-c)^{n}$ we express the action of x by a so-called "Jordan block":

$$
(x ; \mathcal{V} \mathcal{V})=\left(\begin{array}{ccccccc}
c & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & c & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & c & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & c
\end{array}\right)
$$

Applications to linear maps

Suppose V is a finite-dimensional vector space over \mathbb{F} and $L: V \rightarrow V$ is a linear map. Then, as we explained in the last lecture, we can view V as an $\mathbb{F}[x]$-module. I will refer to this as (V, L). In general, (V, L) is not cyclic as an $\mathbb{F}[x]$-module. This is quite obvious if L is the zero map. Then the orbit of any non-zero $v_{0} \in V$ under the action of $\mathbb{F}[x]$ is just the one-dimensional subspace spanned by v_{0}.

Since V is finite-dimensional, (V, L) is at least finitely-generated as an $\mathbb{F}[x]$-module. Any \mathbb{F}-vector-space basis of V will obviously generate (V, L) as an $\mathbb{F}[x]$-module. In general, the elements of an \mathbb{F}-vector-space basis of V will not be independent over $\mathbb{F}[x]$.

To be continued...

